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It is shown that the a effect of mean-field magnetohydrodynamics, which consists of the gener-
ation of a mean electromotive force along the mean magnetic field by turbulently fluctuating parts
of velocity and magnetic field, is equivalent to the simultaneous generation of both turbulent and
mean-field magnetic helicities, the generation rates being equal in magnitude and opposite in sign.
In the particular case of statistically stationary and homogeneous fluctuations this implies that the
a effect can increase the energy in the mean magnetic field only under the condition that magnetic

helicity is also accumulated there.

PACS number(s): 52.30.—q, 47.65.+a, 95.30.Qd

I. INTRODUCTION

In order to explain the origin of the cosmical magnetic
fields, the theory of the turbulent dynamo has been devel-
oped [1-4]. The central mechanism in this theory is the
«a effect, namely the generation of a mean electromotive
force (emf) along a mean, or large-scale, magnetic field
by turbulently fluctuating, or small-scale, parts of veloc-
ity and magnetic field. The effect has also been invoked
to explain the plasma behavior in fusion experiments, in
particular, in the reversed field pinch (RFP) [5-8].

Let the evolution of the magnetic field be described by
the induction equation

oB

E:VX(UXB)+17V2B, (1)
with B and v denoting magnetic induction and fluid ve-
locity and 7 a constant and positive magnetic diffusivity,
n = (uoo) ™!, o being the electrical conductivity and pg
the magnetic permeability in a vacuum. By splitting up
velocity and magnetic fields into mean and fluctuating
parts according to

v = (v) + v, B=(B)+ B, (2)

with angular brackets denoting ensemble averages and
primes the corresponding residuals, and subsequent av-
eraging of Eq. (1), an equation for the temporal evolution
of (B) is obtained, namely

9B)

5 =V x ((v) x (B)) +nV¥B)+ V x &, (3)

where
£ = (v x B'). (4)

& is the mean emf caused by the fluctuations. It is a ma-
jor result of traditional kinematic turbulent-dynamo the-
ory that the presence of kinetic and magnetic helicities is
favorable for an « effect, i.e., a nonvanishing component
£ = a(B) of £ along (B). The densities per unit volume
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of kinetic, magnetic, and current helicity are defined by
Hyxk =v-(Vxv),Hy=A-B,Hc =B-(V x B),
(5)

where A is a vector potential for B. In particular, ev-
idence has been found, from statistical-mechanics argu-
ments as well as from numerical simulations [9-14], that
magnetic helicity, if present at small scales, cascades to
large scales and that this leads to an inverse energy cas-
cade, i.e., to a turbulent-dynamo effect. In the present
paper the a effect is interpreted as a mechanism that
generates simultaneously small-scale and large-scale mag-
netic helicities of opposite sign, which seems compatible
with the helicity-cascade concept.

II. « EFFECT AND THE GENERATION
OF MAGNETIC HELICITY

From Maxwell’s equation 0B /8t = —V x E (E denot-
ing the electric field) and B = V x A we have

Vx(%?—#—E):O (6)

and consequently

0A
B —E+Voa, (7)

with some scalar function ¢4 depending on the gauge of
A. For the rate of change of the magnetic helicity we
then find

9 (A.-B)=—-E-B+Vé, B—A-(V x E)

at
—2E-B-V-(ExA)+V¢, B
=—2E-B-V-(ExA+¢sB). (8)

I

The first term on the right-hand side of the last of Egs.
(8) is due to the local dissipation or generation, respec-
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of magnetic helicity, while the divergence term describes
the flow of magnetic helicity [15].

The mean value of Hps can be written as the sum of
two contributions resulting from the mean and fluctuat-
ing magnetic fields, respectively, namely

(Har) = HEF™ + HY, 9)
with
Hyf ™" = (A) - (B),

Hipe = (A’ - B'). (10)

By virtue of Eq. (8) we can write

o H}\n/}ean o H]\n}ean
= — . — 11
ot 2<E> <B> * ( ot ) transport ( )
and
OH e , L (OHSR
= - . 12
0t 2<E B > * at transport ( )

for the temporal evolutions of the two parts of (Hps). The

transport terms vanish, for instance, in a homogeneous

turbulence (where all means are independent of position).
From Ohm’s law

E=2 _vxB, (13)
o

where j is the electrical current density and poj = Vx B,
we find

(E) = 7V x (B) — (v) x (B) — £. (14)
and
E =nVxB —(v)xB' —v' x(B)—v x B +€.
(15)

Equations (11) and (12) then become

?I%_ — —29V x (B) - (B) + 2€ - (B)
3Hn“fa“>
4 [ e (186)
( 6t transport
and
fluc
agltw = —2n(V x B' - B') — 2€ - (B)

fluc
+ (6HM ) . (17)
ot transport

The last two equations show that the « effect corre-
sponds to the simultaneous generation of magnetic helic-
ities in the mean field and in the fluctuations, the genera-
tion rates being equal in magnitude and opposite in sign.
The mean total magnetic helicity, which is an invariant
of ideal magnetohydrodynamics, is not influenced by the
a effect. This may equally be considered as a transfer of
magnetic helicity between the fluctuating (or small-scale)
and the mean (or large-scale) fields, mediated by the «
effect.

BRIEF REPORTS 33

Consider now a situation in which the magnetic fluc-
tuations are statistically stationary. Actually it is as-
sumed throughout traditional turbulent-dynamo theory
(cf. e.g., Ref. [1], Sec. 2.4.) that the magnetic fluctua-
tions have settled down to a statistically stationary state.
If then, furthermore, the fluctuations are homogeneous,
according to Eq. (17) the a-effect parameter o is con-
nected to the mean current helicity of the fluctuations
by (see also Refs. [16-19])

Gdf€-(B) _ 7
(B): ~ (B)?

(B'-(V x B")). (18)

Let us next examine under which conditions there is a
turbulent-dynamo effect, i.e., under which conditions the
turbulent emf increases the energy in the mean magnetic
field. For that purpose we assume (v) = 0, since we are
not interested in the dynamo action of the mean flow. For

the change of the mean-field magnetic energy density we
find

9 (B)?
at 2

— —~(B)-(V x (E))
—(E) - (V x (B)) + V - (Poynting flux)
— —(V x (B))* + £ (V x (B))
+V . (Poynting flux), (19)

I

where in the last step Eq. (14) (with (v) = 0) has been
used. Thus, it is a component of £ along (the positive
direction of) V x (B), rather than one along (B), which
is necessary for a turbulent dynamo. If we write & =
a(B) + £, where the first term corresponds to the a
effect and £, is the component of £ perpendicular to (B),
then £-(Vx(B)) = a(B)-(Vx(B))+&,-(Vx(B)). The
a effect contributes to the growth of the mean magnetic
field if a(V x (B) - (B)) > 0 or, equivalently [see the
definition of a in Eq. (18)], £ - (B)(V x (B) - (B)) > 0.
For £ - (B)(V x (B) - (B)) < 0 the « effect lowers the
mean-field energy.

As is seen from Eq. (18) and the above discussion, by
a effect we simply mean a nonvanishing component of £
along (B). Very often £ is expanded as & = a;;(B;) +
biji %24 + .., which takes the form £ = &(B) — SV x
(B) + ... in the isotropic case. Then the notion o effect
refers only to the first term of the expansion, while the
second term, the so-called (3 effect, is interpreted as a
turbulent diffusivity. Indeed a pure (3 effect with 3 > 0
corresponds to a turbulent emf with £ - (V x (B)) < 0,
which, according to our above consideration, lowers the
energy of the mean magnetic field.

In the special case of £ - (B) = 0 (no a effect) there
is a pure “pumping effect” (see Ref. [1], Sec. 7.2.). Then
£ admits a representation £ = g x (B) with some vec-
tor field g, which implies 8(B)/0t = V x [({(v) + g) X
(B)] +nV?({B), showing that the turbulent emf acts like
an additional mean flow g.

Consider again the case of statistically stationary and
homogeneous fluctuations. The condition for a dynamo
action of the « effect, £ - (B)(V x (B) - (B)) > 0, then
becomes n(V x B’ - B')(V x (B) - (B)) < 0, i.e., as first
noted in Ref. [20], the current helicities in the fluctuating
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and the mean magnetic fields must have opposite signs.

Assume now that the «a effect really overcomes the dis-
sipative term in Eq. (19), i.e., £ - (V x (B)) > n(V x
(B)Y)?. By using Eq. (18) and the Schwarz inequality
(V x (B))?(B)2 > (V x (B) - (B))? one then finds as a
necessary condition for the growth of (B)? (cf. Ref. [18])

—(V x B'- B')(V x (B) - (B)) > (V x (B) - (B))2.
(20)

That is, the current helicity of the fluctuations must ex-
ceed that of the mean field by modulus.

Condition (20) has an implication for the evolution of
the mean-field magnetic helicity: Since |n(V x B’-B')| =
|€-(B)| due to the assumed stationarity and homogeneity
of the fluctuations, [V x (B) - (B)| < |€ - (B)|. Then
according to Eq. (16) helicity is accumulated in the mean
magnetic field, with sign given by the sign of £ - (B), i.e.
by the sign of a.

Finally, a remark concerning the assumed homogene-
ity of the fluctuations — or the neglect of the helicity
transport, respectively — seems in order. In the RFP,
for instance, where poloidal magnetic fields are externally
supplied (thus the RFP dynamo is not really a dynamo),
helicity transport may dominate over helicity dissipation.
So relations have been derived here [6] which, in contrast
to Eq. (18), express « in terms of a helicity flux.

Also for astrophysical dynamos helicity transport may
be non-negligible. This does not affect the result that
the « effect, which is a local effect, corresponds to the si-
multaneous generation of magnetic helicities in the mean
field and in the fluctuations. But the dynamo region may
be small and a significant part of the magnetic helicity
generated there may be transported out of this region,
rather than being dissipated in situ (so that the dissipa-
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tion region is much larger than the generation region).
In the case of the sun, for example, the dynamo works in
the convection zone, or even in a thin layer at the bot-
tom of the convection zone [21-24], while helicity prob-
ably generated by the dynamo is observed in the solar
atmosphere [25-27] and also in interplanetary magnetic
clouds ejected from the sun [28]. It will be interesting
to carry out improved helicity measurements in the solar
atmosphere as well as in the solar wind and to analyze
them with respect to signatures of the two helicities (that
in the mean field and that in the fluctuations) generated
by the a effect.

III. CONCLUSION

The « effect corresponds to the simultaneous genera-
tion of magnetic helicities in the mean field and in the
fluctuations, the generation rates being equal in magni-
tude and opposite in sign. The mean total magnetic he-
licity is not influenced by the a effect. This may equally
be considered as a transfer of magnetic helicity between
the fluctuating and the mean fields, mediated by the «
effect. In the case of statistically stationary and homoge-
neous fluctuations, in particular, the « effect can increase
the energy in the mean magnetic field only under the con-
dition that also magnetic helicity is accumulated there.
Generally, the two helicities generated by the a effect,
that in the mean field and that in the fluctuations, have
either to be dissipated in the generation region or to be
transported out of this region. The latter, as, for exam-
ple, the ejection of magnetic helicity from the dynamo
region of the sun into the solar atmosphere and the in-
terplanetary space, may provide valuable information on
dynamo processes inaccessible to in situ measurements.
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